Math macro command for latex support in markdown
Number and Arrays
command | visualization | comment | |
---|---|---|---|
a |
$a$ | A scalar | |
\va |
$\va$ | A vector, additionally $\vzero, \vone, \vmu, \vnu, \vtheta$ for \vzero, \vone, \vmu, \vnu, \vtheta |
|
\mA |
$\mA$ | A matrix | |
\tA |
$\tA$ | A tensor | |
\mI_n |
$\mI_n$ | Identity matrix with $n$ rows and $n$ columns | |
\mI |
$\mI$ | Identity matrix with dimensionality implied by context | |
\ve^{(i)} |
$\ve^{(i)}$ | Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at position $i$ | |
\text{diag}(\va) |
$\text{diag}(\va)$ | A square, diagonal matrix with diagonal entries given by $\va$ | |
\ra |
$\ra$ | A scalar-valued random variable | |
\rva |
$\rva$ | A vector-valued random variables | |
\rmA |
$\rmA$ | A matrix-valued random varialbes |
Sets and Graphs
Command | Visualization | Comment |
---|---|---|
\sA |
$\sA$ | A set Note: the command covers sA to sZ but don't no sE since it's expectation |
\R |
$\R$ | The set of real numbers |
{0, 1} |
${0, 1}$ | The set containing 0 and 1 |
{0, 1, \dots, n} |
${0, 1, \dots, n}$ | The set of all integers between $0$ and $n$ |
[a, b] |
$[a, b]$ | The real interval including $a$ and $b$ |
(a, b] |
$(a, b]$ | The real interval excluding $a$ but including $b$ |
\sA \backslash \sB |
$\sA \backslash \sB$ | Set subtraction, i.e., the set containing the elements of $\sA$ not in $\sB$ |
\gG |
$\gG$ | A graph |
Indexing
Command | Visualization | Comment |
---|---|---|
\eva_i |
$\eva_i$ | Element $i$ of vector $\va$, with indexing starting at 1 |
\eva_{-i} |
$\eva_{-i}$ | All elements of vector $\va$ except for element $i$ |
\emA_{i,j} |
$\emA_{i,j}$ | Element $i, j$ of matrix $\mA$ |
\mA_{i, :} |
$\mA_{i, :}$ | Row $i$ of matrix $\mA$ |
\mA_{:, i} |
$\mA_{:, i}$ | Column $i$ of matrix $\mA$ |
\etA_{i, j, k} |
$\etA_{i, j, k}$ | Element $(i, j, k)$ of a 3-D tensor $\tA$ |
\tA_{:, :, i} |
$\tA_{:, :, i}$ | 2-D slice of a 3-D tensor |
\erva_i |
$\erva_i$ | Element $i$ of the random vector $\rva$ |
Linear Algebra Operators
Command | Visualization | Comment |
---|---|---|
\mA^\top |
$\mA^\top$ | Transpose of matrix $\mA$ |
\mA^+ |
$\mA^+$ | Moore-Penrose pseudoinverse of $\mA$ |
\mA \odot \mB |
$\mA \odot \mB$ | Element-wise (Hadamard) product of $\mA$ and $\mB$ |
\mathrm{det}(\mA) |
$\mathrm{det}(\mA)$ | Determinant of $\mA$ |
\sign(x) |
$\sign(x)$ | Sign of a variable $x$ |
\Tr \mA |
$\Tr(\mA)$ | Trace of a matrix A |
Calculus
Command | Visualization | Comment |
---|---|---|
\diff y / \diff x |
$\diff y / \diff x$ | Derivative of $y$ with respect to $x$ |
\frac{\partial y}{\partial x} |
$\frac{\partial y}{\partial x}$ | Partial derivative of $y$ with respect to $x$ |
\nabla_\vx y |
$\nabla_\vx y$ | Gradient of $y$ with respect to $\vx$ |
\nabla_\mX y |
$\nabla_\mX y$ | Matrix derivatives of $y$ with respect to $\mX$ |
\nabla_\tX y |
$\nabla_\tX y$ | Tensor containing derivatives of $y$ with respect to $\tX$ |
\frac{\partial f}{\partial \vx} |
$\frac{\partial f}{\partial \vx}$ | Jacobian matrix $\mJ \in \R^{m\times n}$ of $f: \R^n \rightarrow \R^m$ |
\nabla_\vx^2 f(\vx)\text{ or }\mH(f)(\vx) |
$\nabla_\vx^2 f(\vx)\text{ or }\mH(f)(\vx)$ | The Hessian matrix of $f$ at input point $\vx$ |
\int f(\vx) d\vx |
$\int f(\vx) d\vx$ | Definite integral over the entire domain of $\vx$ |
\int_\sS f(\vx) d\vx |
$\int_\sS f(\vx) d\vx$ | Definite integral with respect to $\vx$ over the set $\sS$ |
Probabilities
Command | Visualization | Comment |
---|---|---|
\ra \bot \rb |
$\ra \bot \rb$ | The random variables $\ra$ and $\rb$ are independent |
\ra \bot \rb \mid \rc |
$\ra \bot \rb \mid \rc$ | They are conditionally independent given $\rc$ |
P(\ra) |
$P(\ra)$ | A probability distribution over a discrete variable |
p(\ra) |
$p(\ra)$ | A probability distribution over a continuous variable, or a variable of unspecified type |
\ra \sim P |
$\ra \sim P$ | Random variable $\ra$ has distribution $P$ |
\E_{\rx \sim P} [ f(x) ] \text{ or } \E f(x) |
$\E_{\rx \sim P} [ f(x) ] \text{ or } \E f(x)$ | Expectation of $f(x)$ with respect to $P(\rx)$ |
\Var(f(x)) |
$\Var(f(x))$ | Variance of $f(x)$ under $P(\rx)$ |
\Cov(f(x), g(x)) |
$\Cov(f(x), g(x))$ | Covariance of $f(x)$ and $g(x)$ under $P(\rx)$ |
H(\rx) |
$H(\rx)$ | Shannon entropy of the random variable $\rx$ |
\KL(P \Vert Q) |
$\KL(P \Vert Q)$ | Kullback-Leibler divergence of $P$ and $Q$ |
\mathcal{N}(\vx ; \vmu , \mSigma) |
$\mathcal{N}(\vx ; \vmu , \mSigma)$ | Gaussian distribution over $\vx$ with mean $\vmu$ and covariance $\mSigma$ |
Functions
Command | Visualization | Comment |
---|---|---|
f: \sA \rightarrow \sB |
$f: \sA \rightarrow \sB$ | The function $f$ with domain $\sA$ and range $\sB$ |
f \circ g |
$f \circ g$ | Composition of the functions $f$ and $g$ |
f(\vx ; \vtheta) |
$f(\vx ; \vtheta)$ | A function of $\vx$ parametrized by $\vtheta$. Sometimes written as $f(\vx)$ to simplify notation |
\log x |
$\log x$ | Natural logarithm of $x$ |
\sigma(x) |
$\sigma(x)$ | Logistic sigmoid, $\displaystyle \frac{1}{1 + \exp(-x)}$ |
\zeta(x) |
$\zeta(x)$ | Softplus, $\log(1 + \exp(x))$ |
\Vert \vx \Vert_p |
$\Vert \vx \Vert_p$ | $L^p$ norm of $\vx$ |
\Vert \vx \Vert |
$\Vert \vx \Vert$ | $L^2$ norm of $\vx$ |
x^+ |
$x^+$ | Positive part of $x$, i.e., $\max(0,x)$ |
\bm{1}_\mathrm{condition} |
$\bm{1}_\mathrm{condition}$ | Is 1 if the condition is true, 0 otherwise |
Custom Commands special
Command | Visualization | Comment |
---|---|---|
\bm{#1} |
$\bm{x}$ | Bold symbol, e.g., $\boldsymbol{x}$ |
\sign |
$\sign$ | operator, Sign , $\operatorname{sign}$ |
\Tr |
$\Tr$ | operator Trace, $\operatorname{Tr}$ |
\E |
$\E$ | Expectation, $\mathbb{E}$ |
\KL |
$\KL$ | Kullback-Leibler divergence, $D_\mathrm{KL}$ |
\NormalDist |
$\NormalDist$ | Gaussian distribution, $\mathcal{N}$ |
\diag |
$\diag$ | Diagonal matrix, $\mathrm{diag}$ |
\Ls |
$\Ls$ | Loss function, $\mathcal{L}$ |
\R |
$\R$ | Real number set, $\mathbb{R}$ |
\emp |
$\emp$ | Empirical distribution, $\tilde{p}$ |
\lr |
$\lr$ | Learning rate, $\alpha$ |
\reg |
$\reg$ | Regularization coefficient, $\lambda$ |
\rect |
$\rect$ | Rectifier activation, $\mathrm{rectifier}$ |
\softmax |
$\softmax$ | Softmax function, $\mathrm{softmax}$ |
\sigmoid |
$\sigmoid$ | Sigmoid function, $\sigma$ |
\softplus |
$\softplus$ | Softplus function, $\zeta$ |
\Var |
$\Var$ | Variance, $\mathrm{Var}$ |
\standarderror |
$\standarderror$ | Standard error, $\mathrm{SE}$ |
\Cov |
$\Cov$ | Covariance, $\mathrm{Cov}$ |
\tran |
$\tran$ | Transpose operator, $^\top$ |
\inv |
$\inv$ | Inverse operator, $^{-1}$ |
\diff |
$\diff$ | Differential operator, $\mathrm{d}$ |
Reference
- Ian Goodfellow's ML book: https://github.com/goodfeli/dlbook_notation/blob/master/notation_example.pdf
- MathJax: https://docs.mathjax.org/en/latest/input/tex/macros.html
No Comments